Integrating Passive Solar Energy to the Climate Control Scheme of a Typical Building Zone to Improve Energy Efficiency

Final Report

Submitted to Dr. Dagmar Niebur, Dr. Jin Wen, and the Senior Design Project Committee of the Electrical and Computer Engineering Department Drexel University

Team Number: ECE-27

Team Members:
Steve Crowell Electrical Engineering
Nicholas Imfeld Computer Engineering
Kevin James Electrical Engineering
Justin Lane Electrical Engineering

Submitted in partial fulfillment of the requirements for the Senior Design Project

12 May 2004
Abstract

In order to reduce the consumption of nonrenewable energy sources in buildings, there is a challenge to better utilize renewable energy sources to improve overall building energy efficiency. To meet this challenge, it is proposed in this project to analyze the effects that passive solar energy has on the climate control system of a typical building zone. The objective of this project is to design a local controller for a typical building zone that integrates the use of solar energy (passive solar building zone), to achieve an ideal comfort range based on a predetermined setpoint. The control strategies of interest include classical PID (spell), Optimal Control methods, and Artificial Neural Networks. A Matlab/Simulink model of the building zone is developed and the control algorithms are implemented to maintain the comfort range. An additional H_∞ adaptive bilinear controller was developed beyond the proposed controllers that successfully met the proposed performance index. Controller performances were analyzed to determine which strategy results in the best performance in a passive solar building. The objectives of this project were met within the budget constraints and within the scheduled time.
Table of Contents

1.0 Problem Description .. 1

2.0 Course of Action ... 1

2.1 Determination of Solar Building Zone Models .. 1

2.1.1 Non-Linear Model .. 1

2.1.1.1 Incidence Angle Calculation .. 2

2.1.1.2 Cooling Load Calculation .. 2

2.1.1.3 Historical Weather Data .. 2

2.1.2 Linear Model .. 2

2.2 Determination of Control Goals ... 3

2.2.1 Temperature Setpoint Tracking .. 3

2.2.2 Definition of Comfort Level .. 3

2.3 Digital Controller Design ... 3

2.3.1 PID Controller .. 3

2.3.2 Neural Network Controller ... 4

2.3.3 LQR Controller ... 4

2.3.4 H Controller .. 5

2.4 Matlab/Simulink Implementation .. 6

2.4.1 Building Zone Models ... 6

2.4.2 Controllers .. 7

2.5 Algorithm Comparison and Analysis ... 7

2.5.1 Non-Linear Control Algorithm Comparison .. 8

2.5.2 Linear Control Algorithm Comparison .. 10

2.5.3 Robustness Testing .. 11

2.5.4 Algorithm Implementation ... 12

2.5.5 Future Work .. 12

2.5.6 Conclusions .. 13

3.0 Societal, Environmental, or Ethical Impacts ... 14

4.0 Economic Analysis .. 14

5.0 Schedule ... 14

6.0 Teamwork ... 15

7.0 Summary/Conclusions ... 15

8.0 References .. 15
Appendices

Appendix A ASHRAE Internal Load Specifications
Appendix B Thermal Model Equation Definitions
Appendix C Equation and Variable List
Appendix D Constant List
Appendix E Incidence Angle Calculation
Appendix F Cooling Load Calculation
Appendix G State Space Model Calculations
Appendix H Non-Linear and Linear Simulink Model
Appendix I PID Controller Design
Appendix J ANN Controller Design
Appendix K LQR Controller Design
Appendix L H-Infinity Controller Design
Appendix M Non-Linear Comparisons
Appendix N Non-Linear System Control, Disturbance, Output Analysis
Appendix O Linear Comparisons
Appendix P Robustness Testing
Appendix Q Budget
Appendix R Schedule
Appendix S Resumes

List of Figures & Tables

Figure 1 Open Loop Room Temperature Response: Non-Linear vs. Linear vs. Setpoint .. 7
Table 2 ASHRAE Office Values .. 16
Table 3 ASHRAE Lighting Values ... 16
Figure 4 Simulation Room Model ... 17
Figure 5 Solar Beam Incident on External Window ... 19
Figure 6 Linear Model Simulink Implementation .. 35
Figure 7 Linear Model Simulink Implementation .. 36
Figure 8 Non-Linear Model PI Control Room Temperature Response 37
Figure 9 Linear Model PI Control Room Temperature Response 38
Figure 10 Simulink PID Controller ... 39
Figure 11 Simulink Block Diagram for Historical Training Data Generation 41
Figure 12 Simulink CV Training Block Control Command Output 42
Figure 13 Room Temperature Response CV Training Block Control Command Output .. 42
Figure 14 ANN Simulink Block Diagram Framework 43
Table 15 LQR State Feedback Gains ... 44
Figure 16 Linear Model LQR Control Room Temperature Response 45
Figure 17 Linear Model LQR Control Variable Response 46
Figure 18 LQR Simulink Model .. 48
Table 19 Out of Pocket Budget ... 89
Table 20 Industry Budget .. 89
Figure 21 Updated Project Schedule ... 90
Figure 22 Original Project Schedule ... 91